One Dimensional Fractional Order Tgv : Gamma-convergence and Bilevel Training Scheme

نویسندگان

  • ELISA DAVOLI
  • PAN LIU
چکیده

New fractional r -order seminorms, TGV r , r ∈ R , r ≥ 1 , are proposed in the one-dimensional (1D) setting, as a generalization of the integer order TGV k seminorms, k ∈ N . The fractional r -order TGV r -seminorms are shown to be intermediate between the integer order TGV k -seminorms. A bilevel training scheme is proposed, where under a box constraint a simultaneous optimization with respect to parameters and order of derivation is performed. Existence of solutions to the bilevel training scheme is proved by Γ–convergence. Finally, the numerical landscape of the cost function associated to the bilevel training scheme is discussed for two numerical examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fourth-order numerical solution of a fractional PDE with the nonlinear source term in the electroanalytical chemistry

The aim of this paper is to study the high order difference scheme for the solution of a fractional partial differential equation (PDE) in the electroanalytical chemistry. The space fractional derivative is described in the Riemann-Liouville sense. In the proposed scheme we discretize the space derivative with a fourth-order compact scheme and use the Grunwald- Letnikov discretization of the Ri...

متن کامل

The new implicit finite difference scheme for two-sided space-time fractional partial differential equation

Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...

متن کامل

A numerical approach for variable-order fractional unified chaotic systems with time-delay

This paper proposes a new computational scheme for approximating variable-order fractional integral operators by means of finite element scheme. This strategy is extended to approximate the solution of a class of variable-order fractional nonlinear systems with time-delay. Numerical simulations are analyzed in the perspective of the mean absolute error and experimental convergence order. To ill...

متن کامل

Optimal Parameters and Regularizers for Image Reconstruction Problems - One Dimensional Setting

A new fractional order seminorm, ICTV r , r ∈ R , r ≥ 1 , is proposed in the one-dimensional setting, as a generalization of the standard ICTV k -seminorms, k ∈ N . The fractional ICTV r -seminorms are shown to be intermediate between the standard ICTV k -seminorms of integer order. A bilevel learning scheme is proposed, where under a box constraint a simultaneous optimization with respect to t...

متن کامل

A numerical method for discrete fractional--order chemostat model derived from nonstandard numerical scheme

‎In this paper‎, ‎the fractional--order form of three dimensional chemostat model with variable yields is introduced‎. ‎The stability analysis of this fractional system is discussed in detail‎. ‎In order to study the dynamic behaviours of the mentioned fractional system‎, ‎the well known nonstandard (NSFD) scheme is implemented‎. ‎The proposed NSFD scheme is compared with the forward Euler and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017